skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "BOLSINOV, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For an arbitrary representation ρ of a complex finite-dimensional Lie algebra, we construct a collection of numbers that we call the Jordan–Kronecker invariants of ρ . Among other interesting properties, these numbers provide lower bounds for degrees of polynomial invariants of ρ . Furthermore, we prove that these lower bounds are exact if and only if the invariants are independent outside of a set of large codimension. Finally, we show that under certain additional assumptions our bounds are exact if and only if the algebra of invariants is freely generated. 
    more » « less